
ARTICLE

A Critical Appraisal of the Scientific Basis
of Commercial Genomic Profiles Used to Assess
Health Risks and Personalize Health Interventions

A. Cecile J.W. Janssens,1,* Marta Gwinn,2 Linda A. Bradley,2 Ben A. Oostra,3 Cornelia M. van Duijn,4

and Muin J. Khoury2

Predictive genomic profiling used to produce personalized nutrition and other lifestyle health recommendations is currently offered

directly to consumers. By examining previous meta-analyses and HuGE reviews, we assessed the scientific evidence supporting the pur-

ported gene-disease associations for genes included in genomic profiles offered online. We identified seven companies that offer predic-

tive genomic profiling. We searched PubMed for meta-analyses and HuGE reviews of studies of gene-disease associations published from

2000 through June 2007 in which the genotypes of people with a disease were compared with those of a healthy or general-population

control group. The seven companies tested at least 69 different polymorphisms in 56 genes. Of the 56 genes tested, 24 (43%) were not

reviewed in meta-analyses. For the remaining 32 genes, we found 260 meta-analyses that examined 160 unique polymorphism-disease

associations, of which only 60 (38%) were found to be statistically significant. Even the 60 significant associations, which involved 29

different polymorphisms and 28 different diseases, were generally modest, with synthetic odds ratios ranging from 0.54 to 0.88 for pro-

tective variants and from 1.04 to 3.2 for risk variants. Furthermore, genes in cardiogenomic profiles were more frequently associated with

noncardiovascular diseases than with cardiovascular diseases, and though two of the five genes of the osteogenomic profiles did show

significant associations with disease, the associations were not with bone diseases. There is insufficient scientific evidence to conclude

that genomic profiles are useful in measuring genetic risk for common diseases or in developing personalized diet and lifestyle recom-

mendations for disease prevention.
Introduction

Advances in genomics are expected to increase our under-

standing of the etiology and pathogenesis of common dis-

eases such as type 2 diabetes, cardiovascular disease, and

cancer. They are also expected to offer new opportunities

for the prevention, early detection, and treatment of these

diseases, in part by allowing health care providers to use

individualized preventive and therapeutic strategies based

on patients’ genomic profiles.1 So far, the complex interac-

tions between genetic and environmental causes of most

common diseases are poorly understood and the poten-

tial usefulness of genome-based interventions is unclear.

Nevertheless, several companies already offer personalized

lifestyle health recommendations and nutritional supple-

ments based on clients’ genomic profiles, and many others

are developing similar strategies (see Web Resources).2

Because most common diseases are caused by complex

interactions among multiple genetic and nongenetic fac-

tors, each of which confer only minor increases in risk,

the predictive value of genomic profiling may be insuffi-

cient as a useful basis for personalized nutritional and life-

style recommendations. When differences in disease risk

between high-risk and low-risk groups are small, we would

expect both groups to benefit fairly equally from general

interventions unless the interventions are proven more

effective for individuals with certain genotypes; however,
evidence of such gene-environment interactions is still

lacking. For these reasons, it has been argued that the use

of genomic profiles to devise personalized lifestyle recom-

mendations is premature and misleading.2–6

A pervasive problem of research on genetic associations

is that positive results are often difficult to replicate.7,8

Results of individual gene-disease association studies have

a high probability of being false-positive, and therefore ad-

equate replications of the same gene-disease association in

independent-study populations are essential.7,9 Systematic

reviews and meta-analyses of epidemiologic studies on

genotype-disease associations are valuable approaches for

assessing the credibility of associations reported in single

studies.6,7,10 In this study, we assess the scientific evidence

for the usefulness of commercially available genomic pro-

files by reviewing meta-analyses of gene-disease associa-

tions for the genetic variants included in the profiles.

Material and Methods

Searching
Starting from the Genewatch 2006 report on individually tailored

nutrition recommendations based on genomic profiling,2 we

searched the Internet and identified seven companies that offer

predictive genetic testing using multiple markers (Genelex, Geno-

vations, Genosolutions, Integrative Genomics, Salugen, Sciona

and Suracell). We obtained information about the genes and
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polymorphisms included in these profiles from the companies’

Web sites (see Web resources), from online sample reports, and

from a published article.11 The genes and polymorphisms in-

cluded in the profiles are listed in Table S1 (available online). Three

companies did not specify the polymorphisms that they tested.

We assumed that these companies tested the same polymor-

phisms in genes also tested by other companies; however, when

their profiles included a gene not tested by any other company,

we reviewed available literature on any polymorphism of the

gene. We searched PubMed for meta-analyses and Human Ge-

nome Epidemiology (HuGE) reviews published from 2000

through June 2007 regarding susceptibility to any disease associ-

ated with these polymorphisms.

Selection of Meta-Analyses
In conducting the PubMed literature search, we used both the ab-

breviation and the full name of each of the 56 genes tested by the

seven companies, in combination with the query term ‘‘meta-

analysis and (gene or polymorphism),’’ without specifying any

polymorphisms or diseases. Next, we hand-searched all retrieved

references for the exact polymorphism(s) studied, the study popu-

lation, and the disease examined. We considered alternative anno-

tations of polymorphisms and verified them in the Online Mende-

lian Inheritance in Man (OMIM) database. We included only

meta-analyses published in English that compared the frequency

of a polymorphism among people with the disease in question

with the frequency among healthy or general-population con-

trols. We did not exclude studies because of statistically significant

heterogeneity in the effect sizes of the individual studies. For meta-

analyses in which there was significant heterogeneity, we report

the meta-analysis with one or two outlying studies removed or

a subgroup analysis of three or more studies involving populations

of Western European descent (the most commonly studied sub-

group), if these had less or no significant heterogeneity, depending

on the availability of information. If more than one meta-analysis

Figure 1. Flow Chart of Selection of
Meta-Analyses

examined the same polymorphism-dis-

ease association, we used the most com-

prehensive one.

Data Extraction
We retrieved data on the gene, the poly-

morphism, and the disease examined in

each study, as well as the number of case

and of control subjects involved; the

odds ratio and 95% confidence interval

(CI) for the polymorphism-disease associa-

tion; and the heterogeneity in effect sizes

of the individual studies. Many of the

meta-analyses we examined presented

multiple odds ratios for the same polymor-

phism-disease association by considering

different genetic models (e.g., dominant

effect of risk alleles, recessive effect, or

per allele effect). We used the per-allele

odds ratio if all models yielded the same

conclusion about the presence of associa-

tion. If the per-allele odds ratio was not statistically significant,

we selected the model (dominant or recessive effect of risk allele)

with the highest odds ratio, assuming that the companies were

referring to that specific association. If random and fixed effects

models were presented, we obtained the odds ratios from the

random-effects models.

Results

The seven companies tested at least 69 different polymor-

phisms in 56 genes (Table S1). Only one gene (MTHFR

[MIM 07093]) was tested by all seven companies, seven

genes (CETP [MIM 118470], COL1A1 [MIM 120150],

GSTM1 [MIM 138350], GSTP1 [MIM 134660], IL-6 [MIM

147620], TNF-a [MIM 191160], and VDR [MIM 601769])

were tested by five or six companies, and 19 genes (34%)

were tested by only one company.

We identified 260 meta-analyses that met our criteria;

they addressed 46 of the 69 polymorphisms and 32

(57%) of the 56 genes tested by the seven companies

(Figure 1 and Table S1), as well as 160 unique associations

between a genetic polymorphism and a disease. Sixteen

meta-analyses (10%) addressed the two polymorphisms

in the MTHFR gene (C677T and A1298C), 13 addressed

polymorphisms in TNF-a, 12 addressed polymorphisms

in GSTM1, 11 addressed polymorphisms in GSTP1 and

GSTT1, and ten addressed polymorphisms in VDR.

Of the 160 unique polymorphism-disease associations

that had been examined by meta-analysis, 60 were statisti-

cally significant (Figure 1 and Table S2), including signifi-

cant associations for 29 of 69 polymorphisms in 25

(45%) of the 56 genes. However, statistically significant

associations were generally modest, with significant odds
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ratios (ORs) ranging from 0.54 to 0.88 for protective alleles

or genotypes and from 1.04 to 1.50 for risk alleles or geno-

types, except for the risk for systemic lupus erythematosus

associated with TNF-a (OR 2.1, 95% CI 1.6-2.7) and the risk

for Alzheimer’s disease associated with APOE-4 (OR 3.2,

95% CI 2.7-3.8; [MIM 107740]). Polymorphisms were asso-

ciated with significantly increased or decreased risk for 28

different diseases. The MTHFR C677T polymorphism was

significantly associated with risk for seven different dis-

eases, GSTT1 [MIM 600436] with risk for six, TNF-a with

risk for five, and GSTM1 and MTHFR A1298C with risk

for four. Twelve meta-analyses showed significant associa-

tions between polymorphisms and risk for cardiovascular

disease (including myocardial infarction, coronary steno-

sis, coronary artery disease, and coronary heart disease),

five between polymorphisms and stroke, and four between

polymorphisms and Alzheimer’s disease or acute leukemia.

On average, meta-analyses showed a significant associa-

tion with disease risk for 58% of the genes included in each

profile (range 38%–83%) (Table 1). These significant associ-

ations, however, were often with risk for disease outcomes

other than those associated with the ‘‘profile’’ (Table 1). For

example, statistically significant associations with disease

risk were found for only two of the five genes included in

osteogenomic profiles, and these associations were with

risk for Alzheimer’s disease, asthma, non-Hodgkin’s lym-

phoma, obesity, and systemic lupus erythematosus, rather

than with risk for bone disorders.

Discussion

Although companies offering genomic profiles did not

specify how they selected polymorphisms for inclusion

in the profiles, they probably did so on the basis of statisti-

cally significant results from association studies. Because

positive results from single gene-disease association studies

are often not replicated in subsequent studies,12 one study

showing a statistically significant association is considered

insufficient evidence of genetic association.10 Our review

of meta-analyses found significant associations with dis-

ease risk for fewer than half of the 56 genes that are tested

in commercially available genomic profiles. Various poly-

morphisms of these genes were associated with risk for

28 different disorders. Many of these disorders were unre-

lated to the ostensible target condition, and the associa-

tions were generally modest.

Before interpreting our results, we need to clarify four

issues regarding the review strategy we used. First, our

paper addressed predictive genomic profiles that are sold

online and that aim to personalize nutrition and other

lifestyle health recommendations. The review did not as-

sess the scientific basis of gene-expression profiles and

pharmacogenomic applications. Although there may be

applications that have stronger scientific support than

others, there are clearly promising developments in this

area.13,14 Second, the information on genes and polymor-
The A
phisms in this study was obtained from company web-

sites and online sample reports. As of November 2007,

all seven companies were still selling the profiles, but

two no longer specified on their Web sites which genes

they were actually testing. Although these companies

may now use other polymorphisms to profile the disease

risk of their clients, the scientific evidence for the disease

risk associated with these other polymorphisms is likely to

be similar to that for the polymorphisms we reviewed.

Third, we limited our search for meta-analyses to those

on the association between polymorphisms and disease

susceptibility, and we excluded those on associations

with intermediate, quantitative phenotypes or risk factors

such as blood pressure or bone mass density because the

need for preventive intervention varies with the level of

these traits. We did include meta-analyses of associations

between polymorphisms and risk for conditions defined

by clinically relevant thresholds, such as hypertension

or osteoporotic fractures. Because the genetic profiles of

the companies are offered to the general public, we re-

stricted our search to meta-analyses of studies that in-

cluded healthy or general-population controls. Because

the predictive value of genetic testing depends on disease

risk, genotype frequencies, and odds ratios for the associ-

ation between disease risk and polymorphisms in a par-

ticular genetic profile, all of which may differ between

populations, the profiles should be evaluated in the target

population.15 This explains why genetic testing for APOE,

Factor II [MIM 176930], and Factor V [MIM 227400] can

have lower predictive value in a general population con-

text but be very informative to persons with a family his-

tory. Fourth, we did not exclude meta-analyses on the ba-

sis of quality criteria, even though there were obvious

differences in quality among meta-analyses. The authors

of larger meta-analyses often selected studies according

to a set of strict criteria, whereas the authors of smaller

ones often combined all available studies. In addition,

more than a quarter of the meta-analyses in Table S2 re-

ported statistically significant heterogeneity in effect sizes

among studies. Several of the meta-analyses that found

a significant association involving heterogeneous study

populations did not find a significant association when

the analyses were restricted to a subgroup of more homog-

enous studies.16,17 Application of strict quality criteria

would have reduced the number of meta-analyses in the

present review substantially.

These methodological choices partly explain why we

found no meta-analyses for 24 of the 56 genes. There

were meta-analyses available for many of these genes,

but these meta-analyses could not evidence the utility of

genomic profiling in the general population. For example,

we found several meta-analyses of pharmacogenomic stud-

ies (e.g., for CYP2C9 [MIM 601130] and CYP2C19 [MIM

124020]18,19), several meta-analyses on diseases that do

not affect the average individual in the general population

(such as IL-10 [MIM 124092] and recurrent pregnancy

loss20), and meta-analyses on health traits (e.g., smoking
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Table 1. Overview of Meta-Analyses of Gene-Disease Association Studies by Genomic Profile

Company Genomic Profile Polymorphismsa

Genes Meta-Analyses

Diseases Associated with Polymorphisms

in the Meta-AnalysesTotal

Significant

Association

with Disease Totalb

Significant

Association

with Disease

1 Heart health 15 13 5 43 21 Acute leukemia, Alzheimer’s disease, asthma,

colorectal cancer, coronary artery disease,

coronary heart disease, depression, gastric

cancer, IgA nephropathy, non-Hodgkin’s

lymphoma, obesity, psoriasis, schizophrenia,

systemic lupus erythematosus (SLE), stroke,

venous thrombosis

Bone health 7 4 2 28 6 Alzheimer’s disease, asthma, non-Hodgkin’s

lymphoma, obesity, psoriasis, SLE

Insulin resistance 6 5 4 32 10 Acute leukemia, Alzheimer’s disease, asthma,

bladder cancer, breast cancer, colorectal

cancer, head and neck cancer, non-Hodgkin’s

lymphoma, obesity, psoriasis, Parkinson’s

disease, SLE

Inflammation

health

7 6 5 48 17 Acute leukemia, bladder cancer, head and

neck cancer, breast cancer, colorectal cancer,

Parkinson’s disease, Alzheimer’s disease,

asthma, non-Hodgkin’s lymphoma, obesity,

psoriasis, SLE

Antioxidant/

detoxification

8 6 4 31 12 Acute leukemia, bladder cancer, breast

cancer, colorectal cancer, coronary heart

disease, head and neck cancer, Parkinson’s

disease

2c OsteoGenomic 5 5 2 22 6 Alzheimer’s disease, asthma, non-Hodgkin’s

lymphoma, obesity, psoriasis, SLE

ImmunoGenomic R4 4 2 17 6 Asthma, non-Hodgkin’s lymphoma, obesity,

psoriasis, schizophrenia, SLE

CardioGenomic 13 10 6 30 18 Acute leukemia, age-related macular

degeneration, Alzheimer’s disease, colorectal

cancer, coronary heart disease, coronary

stenosis, hypertension, myocardial

infarction, schizophrenia, stroke

DetoxiGenomic R19 16 6 62 15 Acute leukemia, bladder cancer, breast

cancer, colorectal cancer, endometriosis,

esophageal cancer, head and neck cancer,

obsessive compulsive disorder, Parkinson’s

disease

3 Cardiogenomic R13 12 7 39 26 Acute leukemia, Alzheimer’s disease, age-

related macular degeneration, colorectal

cancer, coronary artery disease, coronary

heart disease, coronary stenosis, depression,

gastric cancer, hypertension, myocardial

infarction, schizophrenia, stroke, venous

thrombosis

Estrogenomic R14 13 9 73 32 Acute leukemia, Alzheimer’s disease, asthma,

age-related macular degeneration, colorectal

cancer, coronary artery disease, coronary

heart disease, coronary stenosis, depression,

endometriosis, esophageal cancer, gastric

cancer, myocardial infarction, non-Hodgkin’s

lymphoma, obesity, obsessive compulsive

disorder, psoriasis, schizophrenia, SLE,

stroke, venous thrombosis

Immunogenomic R5 5 2 19 6 Asthma, non-Hodgkin’s lymphoma, obesity,

psoriasis, SLE, schizophrenia

Neurogenomic R6 5 4 46 17 Acute leukemia, Alzheimer’s disease, bladder

cancer, colorectal cancer, coronary artery

disease, depression, gastric cancer, head and

neck cancer, obsessive compulsive disorder,

schizophrenia, stroke, venous thrombosis
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Table 1. Continued

Company Genomic Profile Polymorphismsa

Genes Meta-Analyses

Diseases Associated with Polymorphisms

in the Meta-AnalysesTotal

Significant

Association

with Disease Totalb

Significant

Association

with Disease

Osteogenomic R5 5 2 22 6 Alzheimer disease, asthma, non-Hodgkin’s

lymphoma, obesity, psoriasis, SLE

Inflammation R6 5 4 37 18 Acute leukemia, Alzheimer’s disease, asthma,

colorectal cancer, coronary artery disease,

depression, gastric cancer, hypertension,

non-Hodgkin’s lymphoma, obesity, psoriasis,

schizophrenia, SLE, stroke, venous

thrombosis

4 Enhanced Basic

Screening Panel

R12 12 5 52 21 Acute leukemia, Alzheimer’s disease, asthma,

colorectal cancer, coronary artery disease,

depression, gastric cancer, hypertension,

myocardial infarction, non-Hodgkin’s

lymphoma, obesity, Parkinson’s disease,

schizophrenia, SLE, stroke, venous

thrombosis

5 GenoScore R5 5 4 15 10 Acute leukemia, alcoholism, anorexia

nervosa, Alzheimer’s disease, colorectal

cancer, schizophrenia, type 2 diabetes

6 Nutritional

Genetic

Profile

24 19 9 87 33 Acute leukemia, Alzheimer’s disease, asthma,

bladder cancer, breast cancer, colorectal

cancer, coronary artery disease, coronary

heart disease, depression, gastric cancer,

head and neck cancer, IgA nephropathy,

non-Hodgkin’s lymphoma, obesity,

Parkinson’s disease, schizophrenia, SLE,

stroke, type 2 diabetes, venous thrombosis

7d Personal DNA

Analysis Starter

Kit

19 19 9 91 33 Acute leukemia, Alzheimer’s disease, asthma,

bladder cancer, breast cancer, colorectal

cancer, coronary heart disease, gastric

cancer, head and neck cancer, IgA

nephropathy, Parkinson’s disease, coronary

artery disease, depression, schizophrenia,

stroke, venous thrombosis, type 2 diabetes,

non-Hodgkin’s lymphoma, obesity, SLE

a When companies did not specify exact polymorphisms, the number indicates the number of specified polymorphisms plus the number of genes for which

polymorphisms were not specified, indicating that they test at least one polymorphism in these genes.
b Refers to total number of unique meta-analyses (see Figure 1).
c This company now also offers neurogenomic and estrogenomic profiles, but no specific information was available for these profiles.
d This company did not specify polymorphisms, but it only tests genes that are also considered by other companies. Hence, we assumed that this company

also tests the same polymorphisms as do the other companies.
behavior and CYP2A6 [122720]21). Furthermore, for many

genes we found meta-analyses on other polymorphisms

(e.g., IL-10 G[�1082]A22 and LPL Asn291Ser23) or on re-

lated genes (e.g., Leptin Receptor gene (LEPR; [MIM

601007]), but not for Leptin [MIM 164160]).24

This review shows that the excess disease risk associated

with many genetic variants included in genomic profiles

has not been investigated in meta-analyses or has been

found to be minimal or not significant. These results raise

concern about the validity of combining tests for many

different genetic variants into profiles, especially when

the companies offering them do not describe how they

create a composite profile from the results of tests for sin-

gle genetic markers. One company reports that they use

complex mathematical algorithms to produce personal-
The
ized diet and lifestyle recommendations. Another recom-

mends basic nutritional or lifestyle-change support for

homozygous negatives, added support for heterozygous

positives, and maximum support for homozygous posi-

tives, which suggests that they are using single genetic

markers as the basis for their recommendations. This reli-

ance on single genetic markers is particularly worrisome

given the limited predictive value of results from testing

single susceptibility genes with small effects.25–27 To be

meaningful, a genetic risk profile should combine infor-

mation about the disease risk associated with multiple

genes, and creating such a profile would require extensive

knowledge of gene-gene interactions, which are even less

well understood than the disease risk associated with indi-

vidual polymorphisms.
American Journal of Human Genetics 82, 593–599, March 2008 597



How the companies we examined use their clients’ ge-

netic profiles to tailor individualized nutrition-supplement

and lifestyle recommendations is another intriguing puz-

zle. Evidence on gene-diet interactions is still preliminary

because trials designed to test these interactions have

thus far yielded mainly inconclusive results.28 Further-

more, several genes, such as ACE [MIM 106180], APOE,

and MTHFR, increase people’s risk for some diseases and

decrease their risk for others (Table S2). For example,

MTHFR 677TT was associated with an increased risk for

depression, stroke, coronary artery disease, gastric cancer,

schizophrenia, and venous thrombosis, but it was associ-

ated with a decreased risk for colorectal cancer. Hence,

the putative health effects of preventive interventions tai-

lored to a person’s MTHFR genotype may not be entirely

beneficial. Finally, when profiles are composed of low-

risk susceptibility genes, people with purportedly ‘‘high-

risk’’ profiles may be at only slightly higher risk of disease

than are people with ‘‘low-risk’’ profiles. One possible dan-

ger of marketing lifestyle recommendations to people with

‘‘high-risk’’ profiles is that those with ‘‘low-risk’’ profiles

could be led to mistakenly believe that they have little

need to make healthy lifestyle changes. The predictive

value of genomic profiling may simply be insufficient for

targeting interventions when low-risk groups will receive

no intervention at all.29 It also needs to be investigated

whether genomic profiling can usefully identify the better

from the worse responders in the choice between two treat-

ments.

Although genomic profiling may have potential to

enhance the effectiveness and efficiency of preventive in-

terventions, to date the scientific evidence for most associ-

ations between genetic variants and disease risk is insuffi-

cient to support useful applications. Despite advances in

nutrigenomics and pharmacogenomics research,30 it could

take years, if not decades, before lifestyle and medical in-

terventions can be responsibly and effectively tailored to

individual genomic profiles.

Supplemental Data

Two tables can be found with this paper online at http://www.

ajhg.org/.
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Web Resources

The URLs for data presented herein are as follows:

23andme, www.23andme.com

Genelex, www.genelex.com

Genovations, www.genovations.com

Genosolutions, www.genosolutions.com

HuGENet, www.hugenavigator.net

Integrative genomics, www.integrativegenomics.com

Interleukin genetics, www.ilgenetics.com

Navigenics, www.navigenics.com

Nutrilite, www.nutrilite.com

Salugen, www.salugen.com

Sciona, www.sciona.com

Suracell, www.suracell.com

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

PubMed, http://www.ncbi.nlm.nih.gov/pubmed
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